Airoha M0 BLE API  1.0.5.4
queue.h
1 /*
2  * Copyright (c) 1991, 1993
3  * The Regents of the University of California. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  * This product includes software developed by the University of
16  * California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  * may be used to endorse or promote products derived from this software
19  * without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)queue.h 8.5 (Berkeley) 8/20/94
34  * $FreeBSD: src/sys/sys/queue.h,v 1.48 2002/04/17 14:00:37 tmm Exp $
35  */
36 
37 #ifndef _SYS_QUEUE_H_
38 #define _SYS_QUEUE_H_
39 
40 //#include <machine/ansi.h> /* for __offsetof */
41 
42 /*
43  * This file defines four types of data structures: singly-linked lists,
44  * singly-linked tail queues, lists and tail queues.
45  *
46  * A singly-linked list is headed by a single forward pointer. The elements
47  * are singly linked for minimum space and pointer manipulation overhead at
48  * the expense of O(n) removal for arbitrary elements. New elements can be
49  * added to the list after an existing element or at the head of the list.
50  * Elements being removed from the head of the list should use the explicit
51  * macro for this purpose for optimum efficiency. A singly-linked list may
52  * only be traversed in the forward direction. Singly-linked lists are ideal
53  * for applications with large datasets and few or no removals or for
54  * implementing a LIFO queue.
55  *
56  * A singly-linked tail queue is headed by a pair of pointers, one to the
57  * head of the list and the other to the tail of the list. The elements are
58  * singly linked for minimum space and pointer manipulation overhead at the
59  * expense of O(n) removal for arbitrary elements. New elements can be added
60  * to the list after an existing element, at the head of the list, or at the
61  * end of the list. Elements being removed from the head of the tail queue
62  * should use the explicit macro for this purpose for optimum efficiency.
63  * A singly-linked tail queue may only be traversed in the forward direction.
64  * Singly-linked tail queues are ideal for applications with large datasets
65  * and few or no removals or for implementing a FIFO queue.
66  *
67  * A list is headed by a single forward pointer (or an array of forward
68  * pointers for a hash table header). The elements are doubly linked
69  * so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before
71  * or after an existing element or at the head of the list. A list
72  * may only be traversed in the forward direction.
73  *
74  * A tail queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or
78  * after an existing element, at the head of the list, or at the end of
79  * the list. A tail queue may be traversed in either direction.
80  *
81  * For details on the use of these macros, see the queue(3) manual page.
82  *
83  *
84  * SLIST LIST STAILQ TAILQ
85  * _HEAD + + + +
86  * _HEAD_INITIALIZER + + + +
87  * _ENTRY + + + +
88  * _INIT + + + +
89  * _EMPTY + + + +
90  * _FIRST + + + +
91  * _NEXT + + + +
92  * _PREV - - - +
93  * _LAST - - + +
94  * _FOREACH + + + +
95  * _FOREACH_REVERSE - - - +
96  * _INSERT_HEAD + + + +
97  * _INSERT_BEFORE - + - +
98  * _INSERT_AFTER + + + +
99  * _INSERT_TAIL - - + +
100  * _CONCAT - - + +
101  * _REMOVE_HEAD + - + -
102  * _REMOVE + + + +
103  *
104  */
105 
106 /*
107  * Singly-linked List declarations.
108  */
109 #define SLIST_HEAD(name, type) \
110 struct name { \
111  struct type *slh_first; /* first element */ \
112 }
113 
114 #define SLIST_HEAD_INITIALIZER(head) \
115  { NULL }
116 
117 #define SLIST_ENTRY(type) \
118 struct { \
119  struct type *sle_next; /* next element */ \
120 }
121 
122 /*
123  * Singly-linked List functions.
124  */
125 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
126 
127 #define SLIST_FIRST(head) ((head)->slh_first)
128 
129 #define SLIST_FOREACH(var, head, field) \
130  for ((var) = SLIST_FIRST((head)); \
131  (var); \
132  (var) = SLIST_NEXT((var), field))
133 
134 #define SLIST_INIT(head) do { \
135  SLIST_FIRST((head)) = NULL; \
136 } while (0)
137 
138 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
139  SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \
140  SLIST_NEXT((slistelm), field) = (elm); \
141 } while (0)
142 
143 #define SLIST_INSERT_HEAD(head, elm, field) do { \
144  SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \
145  SLIST_FIRST((head)) = (elm); \
146 } while (0)
147 
148 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
149 
150 #define SLIST_REMOVE(head, elm, type, field) do { \
151  if (SLIST_FIRST((head)) == (elm)) { \
152  SLIST_REMOVE_HEAD((head), field); \
153  } \
154  else { \
155  struct type *curelm = SLIST_FIRST((head)); \
156  while (SLIST_NEXT(curelm, field) != (elm)) \
157  curelm = SLIST_NEXT(curelm, field); \
158  SLIST_NEXT(curelm, field) = \
159  SLIST_NEXT(SLIST_NEXT(curelm, field), field); \
160  } \
161 } while (0)
162 
163 #define SLIST_REMOVE_HEAD(head, field) do { \
164  SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \
165 } while (0)
166 
167 /*
168  * Singly-linked Tail queue declarations.
169  */
170 #define STAILQ_HEAD(name, type) \
171 struct name { \
172  struct type *stqh_first;/* first element */ \
173  struct type **stqh_last;/* addr of last next element */ \
174 }
175 
176 #define STAILQ_HEAD_INITIALIZER(head) \
177  { NULL, &(head).stqh_first }
178 
179 #define STAILQ_ENTRY(type) \
180 struct { \
181  struct type *stqe_next; /* next element */ \
182 }
183 
184 /*
185  * Singly-linked Tail queue functions.
186  */
187 #define STAILQ_CONCAT(head1, head2) do { \
188  if (!STAILQ_EMPTY((head2))) { \
189  *(head1)->stqh_last = (head2)->stqh_first; \
190  (head1)->stqh_last = (head2)->stqh_last; \
191  STAILQ_INIT((head2)); \
192  } \
193 } while (0)
194 
195 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
196 
197 #define STAILQ_FIRST(head) ((head)->stqh_first)
198 
199 #define STAILQ_FOREACH(var, head, field) \
200  for((var) = STAILQ_FIRST((head)); \
201  (var); \
202  (var) = STAILQ_NEXT((var), field))
203 
204 #define STAILQ_INIT(head) do { \
205  STAILQ_FIRST((head)) = NULL; \
206  (head)->stqh_last = &STAILQ_FIRST((head)); \
207 } while (0)
208 
209 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
210  if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
211  (head)->stqh_last = &STAILQ_NEXT((elm), field); \
212  STAILQ_NEXT((tqelm), field) = (elm); \
213 } while (0)
214 
215 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
216  if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \
217  (head)->stqh_last = &STAILQ_NEXT((elm), field); \
218  STAILQ_FIRST((head)) = (elm); \
219 } while (0)
220 
221 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
222  STAILQ_NEXT((elm), field) = NULL; \
223  *(head)->stqh_last = (elm); \
224  (head)->stqh_last = &STAILQ_NEXT((elm), field); \
225 } while (0)
226 
227 #define STAILQ_LAST(head, type, field) \
228  (STAILQ_EMPTY((head)) ? \
229  NULL : \
230  ((struct type *) \
231  ((char *)((head)->stqh_last) - __offsetof(struct type, field))))
232 
233 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
234 
235 #define STAILQ_REMOVE(head, elm, type, field) do { \
236  if (STAILQ_FIRST((head)) == (elm)) { \
237  STAILQ_REMOVE_HEAD((head), field); \
238  } \
239  else { \
240  struct type *curelm = STAILQ_FIRST((head)); \
241  while (STAILQ_NEXT(curelm, field) != (elm)) \
242  curelm = STAILQ_NEXT(curelm, field); \
243  if ((STAILQ_NEXT(curelm, field) = \
244  STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
245  (head)->stqh_last = &STAILQ_NEXT((curelm), field);\
246  } \
247 } while (0)
248 
249 #define STAILQ_REMOVE_HEAD(head, field) do { \
250  if ((STAILQ_FIRST((head)) = \
251  STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \
252  (head)->stqh_last = &STAILQ_FIRST((head)); \
253 } while (0)
254 
255 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
256  if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \
257  (head)->stqh_last = &STAILQ_FIRST((head)); \
258 } while (0)
259 
260 /*
261  * List declarations.
262  */
263 #define LIST_HEAD(name, type) \
264 struct name { \
265  struct type *lh_first; /* first element */ \
266 }
267 
268 #define LIST_HEAD_INITIALIZER(head) \
269  { NULL }
270 
271 #define LIST_ENTRY(type) \
272 struct { \
273  struct type *le_next; /* next element */ \
274  struct type **le_prev; /* address of previous next element */ \
275 }
276 
277 /*
278  * List functions.
279  */
280 
281 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
282 
283 #define LIST_FIRST(head) ((head)->lh_first)
284 
285 #define LIST_FOREACH(var, head, field) \
286  for ((var) = LIST_FIRST((head)); \
287  (var); \
288  (var) = LIST_NEXT((var), field))
289 
290 #define LIST_INIT(head) do { \
291  LIST_FIRST((head)) = NULL; \
292 } while (0)
293 
294 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
295  if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
296  LIST_NEXT((listelm), field)->field.le_prev = \
297  &LIST_NEXT((elm), field); \
298  LIST_NEXT((listelm), field) = (elm); \
299  (elm)->field.le_prev = &LIST_NEXT((listelm), field); \
300 } while (0)
301 
302 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
303  (elm)->field.le_prev = (listelm)->field.le_prev; \
304  LIST_NEXT((elm), field) = (listelm); \
305  *(listelm)->field.le_prev = (elm); \
306  (listelm)->field.le_prev = &LIST_NEXT((elm), field); \
307 } while (0)
308 
309 #define LIST_INSERT_HEAD(head, elm, field) do { \
310  if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \
311  LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
312  LIST_FIRST((head)) = (elm); \
313  (elm)->field.le_prev = &LIST_FIRST((head)); \
314 } while (0)
315 
316 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
317 
318 #define LIST_REMOVE(elm, field) do { \
319  if (LIST_NEXT((elm), field) != NULL) \
320  LIST_NEXT((elm), field)->field.le_prev = \
321  (elm)->field.le_prev; \
322  *(elm)->field.le_prev = LIST_NEXT((elm), field); \
323 } while (0)
324 
325 /*
326  * Tail queue declarations.
327  */
328 #define TAILQ_HEAD(name, type) \
329 struct name { \
330  struct type *tqh_first; /* first element */ \
331  struct type **tqh_last; /* addr of last next element */ \
332 }
333 
334 #define TAILQ_HEAD_INITIALIZER(head) \
335  { NULL, &(head).tqh_first }
336 
337 #define TAILQ_ENTRY(type) \
338 struct { \
339  struct type *tqe_next; /* next element */ \
340  struct type **tqe_prev; /* address of previous next element */ \
341 }
342 
343 /*
344  * Tail queue functions.
345  */
346 #define TAILQ_CONCAT(head1, head2, field) do { \
347  if (!TAILQ_EMPTY(head2)) { \
348  *(head1)->tqh_last = (head2)->tqh_first; \
349  (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
350  (head1)->tqh_last = (head2)->tqh_last; \
351  TAILQ_INIT((head2)); \
352  } \
353 } while (0)
354 
355 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
356 
357 #define TAILQ_FIRST(head) ((head)->tqh_first)
358 
359 #define TAILQ_FOREACH(var, head, field) \
360  for ((var) = TAILQ_FIRST((head)); \
361  (var); \
362  (var) = TAILQ_NEXT((var), field))
363 
364 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
365  for ((var) = TAILQ_LAST((head), headname); \
366  (var); \
367  (var) = TAILQ_PREV((var), headname, field))
368 
369 #define TAILQ_INIT(head) do { \
370  TAILQ_FIRST((head)) = NULL; \
371  (head)->tqh_last = &TAILQ_FIRST((head)); \
372 } while (0)
373 
374 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
375  if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
376  TAILQ_NEXT((elm), field)->field.tqe_prev = \
377  &TAILQ_NEXT((elm), field); \
378  else \
379  (head)->tqh_last = &TAILQ_NEXT((elm), field); \
380  TAILQ_NEXT((listelm), field) = (elm); \
381  (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \
382 } while (0)
383 
384 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
385  (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
386  TAILQ_NEXT((elm), field) = (listelm); \
387  *(listelm)->field.tqe_prev = (elm); \
388  (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \
389 } while (0)
390 
391 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
392  if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \
393  TAILQ_FIRST((head))->field.tqe_prev = \
394  &TAILQ_NEXT((elm), field); \
395  else \
396  (head)->tqh_last = &TAILQ_NEXT((elm), field); \
397  TAILQ_FIRST((head)) = (elm); \
398  (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \
399 } while (0)
400 
401 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
402  TAILQ_NEXT((elm), field) = NULL; \
403  (elm)->field.tqe_prev = (head)->tqh_last; \
404  *(head)->tqh_last = (elm); \
405  (head)->tqh_last = &TAILQ_NEXT((elm), field); \
406 } while (0)
407 
408 #define TAILQ_LAST(head, headname) \
409  (*(((struct headname *)((head)->tqh_last))->tqh_last))
410 
411 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
412 
413 #define TAILQ_PREV(elm, headname, field) \
414  (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
415 
416 #define TAILQ_REMOVE(head, elm, field) do { \
417  if ((TAILQ_NEXT((elm), field)) != NULL) \
418  TAILQ_NEXT((elm), field)->field.tqe_prev = \
419  (elm)->field.tqe_prev; \
420  else \
421  (head)->tqh_last = (elm)->field.tqe_prev; \
422  *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \
423 } while (0)
424 
425 
426 #ifdef _KERNEL
427 
428 /*
429  * XXX insque() and remque() are an old way of handling certain queues.
430  * They bogusly assumes that all queue heads look alike.
431  */
432 
433 struct quehead {
434  struct quehead *qh_link;
435  struct quehead *qh_rlink;
436 };
437 
438 #ifdef __GNUC__
439 
440 static __inline void
441 insque(void *a, void *b)
442 {
443  struct quehead *element = (struct quehead *)a,
444  *head = (struct quehead *)b;
445 
446  element->qh_link = head->qh_link;
447  element->qh_rlink = head;
448  head->qh_link = element;
449  element->qh_link->qh_rlink = element;
450 }
451 
452 static __inline void
453 remque(void *a)
454 {
455  struct quehead *element = (struct quehead *)a;
456 
457  element->qh_link->qh_rlink = element->qh_rlink;
458  element->qh_rlink->qh_link = element->qh_link;
459  element->qh_rlink = 0;
460 }
461 
462 #else /* !__GNUC__ */
463 
464 void insque(void *a, void *b);
465 void remque(void *a);
466 
467 #endif /* __GNUC__ */
468 
469 #endif /* _KERNEL */
470 
471 #endif /* !_SYS_QUEUE_H_ */